
Grading Rubric –
Tutorial 11, Review

Description Pts Your

Score
1. Use your editor to open the jpf_hitori_txt.html and jpf_hitori_txt.js files
from the RA11 folder. Enter your name and the date in the comment section
of each file, and save them as jpf_hitori.html and jpf_hitori.js respectively.

4

2. Go to the jpf_hitori.html file in your editor. Directly above the closing
</head> tag, link the page to the jpfjiitori.css style sheet and to the
jpf_grids3.js and jpfjiitori.js JavaScript files. Load both JavaScript files
asynchronously. Take some time to study the contents of the HTML file and
then close it, saving your changes.

4

3. Go to the jpfjiiton.js file in your editor. Directly below the comment
section, declare the global allcells variable, which you will use to store an
array of the puzzle cells in the Hitori table. Do not define a value for the
variable yet.

4

4. Insert a command to run the startUp() function when the page is loaded
by the browser.

4

5. Add the startUp() function, which displays the contents of Puzzle 1 after
the page is loaded and sets up the initial event handlers. Within the function,
add the following commands:
a. Change the inner HTML of the element with the ID, "puzzleTitle" to the
text "Puzzle 1".
b. Call the drawHitori() function using the hitorilNumbers, hitorilBlocks,
and hitorilRating variables as parameter values and store the HTML code
returned by the function in the inner HTML of the page element with the ID
"puzzle".
c. Declare a variable named puzzleButtons referencing the page elements
with the class name "puzzles". Loop through the puzzleButtons object
collection and for each button add an event handler that runs the
switchPuzzle() function when the button is clicked.
d. Call the setupPuzzle() function that defines the initial appearance of the
first puzzle.
e. Add an event handler to the Check Solutions button to run the
findErrors() function when clicked.
f. Add an event handler to the Show Solutions button to run the
showSolution() function when clicked.

12

6. Add the switchPuzzle() function, which switches the page between the
three possible Hitori puzzles. Include the event object e as a parameter of
the function and add the following commands:
a. Declare the puzzlelD variable equal to the ID of the event object target.
b. Change the inner HTML of the element with the ID "puzzleTitle" to the
value of the value attribute of the event object target.
c. Create a switch-case structure with the puzzleID variable that loads the
appropriate HTML code for each of the three puzzles into the page element
with the ID "puzzle". Use the drawHitori() function to generate the HTML
code and assume that puzzleID is limited to the values "puzzlel", "puzzle2",
and "puzzle3".
d. After the switch-case structure, call the setupPuzzle() function to set up
the features of the selected puzzle.
e. Enclose all of the commands in the switchPuzzle() function within an if
statement that displays a confirm dialog box asking users whether they want
to switch puzzles even though their work will be lost. If the confirm dialog
box returns a value of true, run the commands within the if statement
command block.

20

7. Create the setupPuzzle() function to set up the features of the puzzle
table. Within the function add the following commands:
a. Use the querySelectorAll() method to create an object collection of all of
the td elements within the hitoriGrid table and save the object collection in
the allCells variable.
b. Create a for loop that loops the allCells object collection and, for each
cell, change the background-color style to white, the font color to black, and
the border-radius value to 0.
c. Within the for loop, add a mousedown event listener for each cell in the
allCells collection that changes the cell's appearance depending on whether
the Shift key, the Alt key, or no key is pressed by the user. Add the
following commands to the anonymous function for the mousedown event:
i. Change the background color to white, the font color to black, and the
border radius to 0 if the user is pressing the Shift key.
ii. Change the background color to black, the font color to white, and the
border radius to 0 if the user is pressing the Alt key.
iii. Otherwise, change the background color to rgb(101, 101, 101), the font
color to white, and the border radius to 50%.
iv. To avoid inadvertently selecting the text of the table cells, include a
command to prevent the default action of the browser in response to the
mousedown event.
d. Rebecca wants a different mouse cursor depending on whether the user
is pressing the Shift key, the Alt key, or no key when the mouse pointer
moves over a puzzle cell. Within the for loop, add a mouseover event
listener for each puzzle cell that runs an anonymous function that
i. Changes the cursor to the jpf_eraser.png image or the generic cursor
named "alias" if the user is pressing the Shift key.

34

ii. Changes the cursor to the jpf_block.png image or the generic cursor
named "cell" if the user is pressing the Alt key.
iii. Otherwise, changes the cursor to the jpf_circle.png image or the generic
cursor named "pointer".
e. Finally, within the for loop, add an event listener that runs the
checkSolution() function in response to the mouseup event to test whether
the user has solved the puzzle.
8. Create the findErrors() function that will highlight incorrect cells by
displaying the cell number of an incorrect cell in a red font. Add the
following commands:
a. Create a for loop that goes through all of the cells in the allCells object
collection. If the cell belongs to the blocks class but has a background color
of rgb(101, 101, 100) or if it belongs to the circles class but has a black
background, change the font color to red.
b. The red font colors should appear only briefly. After the for loop, insert
a setTimeout() method with a 1-second interval. Within the setTimeout()
method, add an anonymous func- tion that loops through every cell in the
allCells collection, changing all cells with a font color of red back to white.

8

9. Document your code in the JavaScript file with descriptive comments
throughout.

8

10. Save your changes to the file and then load jpf_hitori.html in your
browser.
a. Verify that you can switch puzzles by clicking the Puzzle buttons at the
top of the page, and that you are prompted to confirm whether you want to
change your puzzle. Verify that you can view the complete solution to each
puzzle by clicking the Show Solution button.
b. Verify than you can change a cell to a gray circle by clicking the cell.
Verify that you can change a cell to a solid black block by clicking the cell
with the Alt key pressed down. Finally, verify that you can restore a cell to
black text on a white background by clicking a previously selected cell with
the Shift key pressed down.
c. Verify that the cursor changes shape as you move the mouse pointer over
the puzzle cells, changing from a circular cursor to a block cursor when the
Alt key is pressed or to an eraser cursor when the Shift key is pressed.
d. Verify that you can test for errors by clicking the Check Solution button,
and that your errors are displayed in a red font for one second.
e. Solve the first puzzle using the solution provided in Figure 11-51. Verify
that you receive a congratulatory message upon successfully completing the
puzzle.

2

TOTAL 100

YOUR SCORE: ______

